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low frequencies. Considerable departure from the quasi-
static results has been shown to occur with increasing
frequency, however. The analysis verifies the rise of charac-
teristic impedance with frequency as predicted by Krage
and Haddad [6].
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Circular Waveguide with Sinusoidally Perturbed Walls

OMAR RAFIK ASFAR anp ALI HASAN NAYFEH

Abstract—Uniform second-order asymptotic expansions are
obtained for the propagation of TM waves in a perfectly conducting
circular waveguide with sinusoidally perturbed walls using the method
of multiple scales. The analysis concerns the interaction of two prop-
agating modes satisfying the resonance condition imposed by the
periodicity of the waveguide walls. Two cases of resonance are

treated as well as the case of decoupled modes. In the first case:

resonance occurs whenever the difference between the wavenumbers
of the two interacting modes is nearly equal to the wall wavenumber,
while in the second case the difference is nearly equal to twice the
wall wavenumber. The results of the theory are then applied to the
design of a mode coupler.

I. INTRODUCTION

AVEGUIDES having periodic structure find appli-

cation in such microwave devices as the magnetron,
the traveling-wave amplifier, and the linear accelerator
[13. In this paper we consider the case where the peri-
odicity is a small parturbation of the waveguide wall
which results in its use as a mode coupler.

We consider the case of propagation of TM modes in a
perfectly conducting circular waveguide whose wall is
sinusoidally perturbed so that the radius of the cross
section of the guide at an axial location 2’ in a cylindrical
coordinate system (p’,¢,2’) is given by

R(Z') = Ro(1 + esin k,'2") (1)
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where R, is the average or unperturbed radius of the guide,
k.’ is the wavenumber of the wall perturbation, and € is a
dimensionless parameter much smaller than unity and
equal to the ratio of the amplitude of the periadic pertur-
bation to the average radius R.

Marcuse and Derosier [ 2] treated the problem of a round
dielectric waveguide with periodic wall corrugations and
found that two guided modes are coupled if the difference
between their wavenumbers is equal to the wavenumber of
the wall k,’. In faet, other resonances are possible as our
analysis will show. They also confirmed the coupling
experimentally and observed complete power conversion
between the two modes. Marcuse used a combination of
the Galerkin procedure and the method of averaging in
order to obtain equations for the amplitudes of the
interacting modes [37]. Chandezon et al. [4] treated wave
propagation in a perfectly conducting guide with sinus-
oidally perturbed walls using the Rayleigh~-Schrodinger
technique to find a perturbation expansion in powers of ¢
for the case of a cylindrically symmetric TM mode
(3/9¢ = 0). They only considered the very special case
of resonance when the wavenumber of the excited mode is
equal to %k, with a correction to first order in ¢ only.

A first-order uniformly valid expansion for the case of a
parallel-plate waveguide with sinusoidal walls was ob-
tained by Nayfeh and Asfar [5] for two interacting modes
in the neighborhood of resonance that is given by the
condition

(2)
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where k/(k.") are the wavenumbers of the generated
(excited) mode. The resonances occur in the straight-
forward expansion as nonuniformities, and the uniformly
valid expansion was obtained by using the method of
multiple scales [6]. It was also shown that the solution is
consistent with conservation of energy.

In this paper we determine second-order uniform
expansions for two interacting modes satisfying the reso-
nance condition (2) by using the method of multiple
scales, as well as near the resonances

2k k' — ks (3)

The latter appears as a nonuniformity in the straight-
forward second-order equations which were found to be
nonsolvable. Solutions away from resonance will also be
obtained by using the method of multiple scales.

1I. FORMULATION

We introduce dimensionless coordinates p and z given by
p = p' /Ry, 2=2/Ro, and make time dimensionless by
using Ry/c where ¢ is the phase speed of electromagnetic
waves in the medium. We eonsider the case of TM modes as
an illustration of the technique which is applicable to TE
modes as well. For TM modes the fields are derived from a
z-directed vector potential whose scalar component ¢,
which is assumed to have the time variation exp (—1wt), is
governed by the Helmholtz equation

VY k=0 (4)

where k is the dimensionless free-space wavenumber and

19 J 1 62 ia
V=-—(p— +—.
2a¢2 §22

5
pdp ap 5

The boundary condition is the vanishing of the tangential
component of the electric field at p = 1 4 esin k,2. This
gives

2,

ay
k2 )y = —eky cos ky,
< Py + > Y = —ekycos kyz o907

PERTURBATION EXPANSION USING THE
METHOD OF MULTIPLE SCALES

We seek an asymptotic expansion to ¢ in the form
¥ = vo(p,0,Z0,21,22) + e¢1(p,$,Z0,21,Z>)
+ e (0,0,20,21,23) + +++ (7)

where Z, = z is a short-length scale of the order of a
wavelength; Z; = ez and Z, = €%z are long-length scales
characterizing the spatial amplitude and phase modula~
tions. Using the chain rule we can express d/9z as

(6)

IIT.

+62~—— + - (8)

dz 37, € 9z, YA

Substituting (7) and (8) into (4)—(6), expanding ¢ at the
boundary in a Taylor series around p = 1, and equating
coefficients of equal powers of e to zero, we obtain:
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Order €
Voo + k%o = 0 (9a)
where
19 0 1 9 02
Vi?=-—1p— -t — 9b
b <p3p) _}_;02&#“’_‘_6202 (9b)
& k 1
P 2 - =
(GZO?' + ) Yo=0 at »p (9¢)
Order ¢
RV
Ve ko, = —2 10
v + ks 377, (10a)
' o
i o = —k, ko7,
(é)Z ;T > Y = cOS o 3937
9?2 o
— sin k ZD<6Z2 4 k2> E
%o
— 2 = 10b
: 0z0z, " (10b)
Order &
6211/0 6 Xbo 62'!’1
Vods + ks = — —2 1
Mot B = =2 " ane lazez, 1
(672 + k2> Yo
. Yo 0 ¢0
= — ik, 2%knZo ——— — ku | A
2w S 200 5 207, 008 Bwle 97,
. RV -
— Ty ———— 7
2 sin k,Zy 39927, sin? k,Zo
Yy
— 2
<3Z0 + ) dp*
o %Y Y o
— ko k.2 — -
aZ 2 cos 0 apaZo 6Z06Z1 (9Z0(9Z2
. G2
— sin kwZo (52 + k2) P at p=1 (11b)

We assume that the solution of (9a) that is bounded at
the axis is a linear combination of two propagat ng modes;
i.e.,

Yo = An(21,Z2)J n(vmnp) exp [i(knZo + m¢) ]
+ Ai(Z1,Z2) T (vmsp) exp [i(ksZo + me) ] (12)
where J., is Bessel’s function of the first kind of order m and
B — k2 = v.7 (13)
Substituting (12) into (9¢), we have

j=mn and s.
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Ju(ymi) = 0. (14)

The functions 4, and A, will be determined from the
solvability conditions of the first- and second-order prob-
lems.
IV. SOLUTION OF FIRST-ORDER PROBLEM
Substituting (12) into (10a) and (10b) and using the
fact that ¥, vanishes at the wall, we obtain

. 0A ;
—2% 3k a—Z—] I (Ymip)
1

cexp [i(k;Zy + me)] (15a)

Vol + k¥ =

j=n,s

92 R
(—_ + k> U= 3T vl (i)

“{(vmi* — kikw) exp [i(k; + kw) Zo]
— (Ymi® + ki) exp [i(k; — ko) Zo]}
cexp (1me) (15b)
To determine the solution of (15a) and (15b), we
distinguish between two cases: k, — k, is away from £k,
(the two modes are decoupled) and k, — k, &~ k,, (reso-

nance, the two modes are coupled). These cases are con-
sidered separately starting with the first.

at p=1.

Case of Decoupled Modes

In this case, the terms proportional to exp (ik;Z,),
exp [2(k; + ko) Zo], and exp[i(k; — kw)Zo] are inde-
pendent. Hence, we seek a particular solution to (15) in
the form

Y1 = Ti(p) exp [i(kiZo + mé) ] + 3% 2 YmiAiJw' (Ymi)

j=n,s

L(vm® — kikeo) exp [i(k; + ko) Zo]®1(p)
— (Ymi® + kiko) exp [i(k; — k) Zo]61(p) Jexp (ime).
(16)

Substituting (16) into (15) and equating the coeffi-
cients of the independent terms in Z, on both sides; we
obtain

1d/ dT; . m2> ., O0A;
Sl it — — ) T = —26k; == J . (Ymi
o dp P dp) + ('Y j 2 j Kj (9Z1J (Ymip)

(17a)
Ij(p) =0 (17b)
£(®n) + afPn =0 ®(l) = a2 (18a)

where
o=t Z (o) = wr =k (st h (Sh)
£(04) +B/01 =0 0,(1) = B2 (19a)

where
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B =k — (kj — ku)? (19b)

Since the homogeneous parts of (17) have a nontrivial
solution, the inhomogeneous problem has a solution if,
and only if, a solvability condition is satisfied (i.e., the
inhomogeneous parts are orthogonal to every solution of
the adjoint homogeneous problem) . Since (17a) and (17b)
have the same form as (61) and (62), it follows from (66)
that the solvability condition is

(;—2{ =0 or A;= A;(Zy) (20)
hence, T; = 0.
The solutions of (18) and (19) are
®51(p) = [ m(ay) 17 m(eip) (21)
0:1(p) = [BATm(B5) I m(Bip). (22)

Substituting (21) and (22) into (17), and recalling that
I'; = 0, we obtain

V=1 2 Aj{Mim(azp) exp [i(h; + Ku) Zo]

J=n,s

+ Aoidn(Bsp) €xp [2(k; — ku)Zo]} exp (1me) (23a)
where
Auj = Frmaln Cvms) (vt = hik) [T (e T4 (23b)
Azj = —3Ymi o (Ymi) (¥mi® + kiko) (82T (85) 17 (23¢)
Case of Coupled Modes
For the case of near resonance we let
ke =k — ky + & (24)

where 6 = 0(1) is a detuning parameter, and express
exp [i(k, — kv)Zo] and exp (ks + ku)Zo ] as

exp [i(k, — ko) Zo] = exp [i(ksZo — 8Z1) ] (25a)

In this case, the terms proportional to exp (#k,Z;) and
exp (tk.Zo) are not independent from the terms
exp [2(kn — kw)Zo] and exp [Z(ks + k) Zo], respectively.
Consequently, the solvability condition obtained in the
preceding section has to be modified accordingly. To de-
termine the solvability condition, we let

1= 2 Tulp) exp [i(kiZo + me)].

j=n,s

Substituting (26) into (15), using (25) and equating the
coeflicients of exp (ik,Z,) on both sides, we obtain

(26)

ST 1T = =2y 5 i) (20)
Yot Tu1 = 5tymsAsIm’ (Yms) (Yms2 — kskw) exp (1621)
at p=1 (28a)
Yu2Ta = —3Vmndnd i’ (Ymn) (Yan2 + Enkiw) exp (—1621)
at p=1. (28b)
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Since (27) and (28) have the same form as (61) and (62),
it follows from (66) that their solvability conditions are

%{;_j = Prexp (46Z,) A, (29a)
‘Z‘; — Py oxp (—iZ0) A, (29b)
where
Py = 5 (Vos/kYmn) I’ (Yms) (Yms® — kskw) /T (V)
7 (29¢)
Py = =5 (Youn/FsYme) ' (Ymn) (Ymn? + nku) /o’ (Yms) .
(29d)
Equations (29a) and (29b) admit solutions of the form
An = a,exp [i(q+8)Z:] A, = a.exp (4¢Z1) (30a)
where a,, and a, are constants and
g = 3[—6 & (8 — 4P Py)V2], (30b)

Sinece Yms? — kol = k2 — k2 — kdkw = k2 — ko(ks + k) =
k — ky(ky, + e6), and since & >k, and k., PP, <0,
hence ¢ is real and 4, and A4, are ocsillatory. Therefore, to
this order, (30a) shows that neither mode can exist in the
waveguide without strongly exciting the other and that
both modes propagate unattenuated along the waveguide
with a continuous energy exchange between the inter-
acting modes.

The inhomogeneous solution for ¢4 in this case can be
abstracted from (23) by excluding the terms exp [ (k. —
k) Zy] and exp [<(ks + ko) Zo |; that is

Y1 = 1AL AT (anp) exp [1(k, + kw) Zo + tme]

+ ihosA oS (Bep) exp [i(ks — ko) Zo + im].  (31)

V. SOLUTION OF SECOND-ORDER PROBLEM

To determine the variation of A; with Z,, we need to
investigate the second-order problem. To accomplish this,
we distinguish three cases:

1) the case of decoupled modes (i.e., k, — ks away from
ky or 2k.) ;

2) the case of second-order resonance (k, — k, =~ 2k,) ;

3) the case of first-order resonance treated in the pre-
vious section (k, — k; =~ kw)

In what follows, we treat each of these cases separately.

Case of Decoupled Modes

Substituting (12) and (23) into (11a) and (11b), and
using the fact that 84;/dZ, = 0, we obtain

. dA;
-2 X kjd—Z]Jm(vm]p)
2

-exp [i(k;Zo -+ me) ]

Voipe + ki =

J=n,s

(32a)
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82
<5Z_02 + k2> 2
= > {Eyexp (ikjZo) + Eyjexp [e(k; + 2ko) Zo]
+ Eyexp [i(k; — 2kw)Zo ]} A; exp (imé) at p =1
(32b)

where the constants F,; are defined in Appendix II.

As before, we determine the solvability condition for
(32a) and (32b) by seeking a particular solution of the
form

Yo = 2. Ti(p) exp [i(k,Zo + me) ]
j=n,s
Substituting (33) into (32a) and (32b), and ecuating the
coefficients of exp (ik,Z,) on both sides, we obtain

(33)

. dA;

"G(I‘ﬂ) + 7mj2F12 = _2ij __]Jm(')’mﬂ)) (343)
dZs,

I'jg == ’ymj—“onjAj at p= 1. (34b)

Since (34a) and (34b) have the same form as (61) and
(62), it follows from (66) that the solvability condition is

dA; )
d—ZZ = 3k Y B A, /T w! (Yms)- (35)
The solution for A4, is therefore
A; = ajexp [—(Boi/kiSw' (Ymi)Ymi)Z:]  (36)

where a; is a constant. We note that the exponent in (36) is
pure imaginary and hence A; is bounded. Thus the effect
of the wall perturbations is to decrease the wavenumbers of
all decoupled modes.

Case of k, — ks = 2k,
Substituting (12) and (23) into (11a) and (11b), and
using the fact that 84;/0Z, = 0, we obtain

' dA;
—21 > k; d_Zi

exp [1(k;Zo + mo) ]

V()Z\pz + k2!//2 = Jm ('Ymip)

7=n,s

(37)

62
<6_Z—0_2 + k2> "2

= 3 |Eoexp (ikiZo) + Eijexp [(k; + 2k.) Zo]

j=n,s

+ Epjexp [2(k; — 2kw)Zo ]} Ajexp (tmep) at p =1

(38)
where the constants E,, are given in.Appendix [I.
For the case of near resonance, we let
kn = ks + 2ky + €5 (39)

where 8 is a detuning parameter. Using (39), we express
exp [i(k, — 2kw) Zo] and exp [Z(k, + 2k.)Zo] as
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exp [ (kn — 2kw)Zo] = exp [i(kZs + 6Z5) ]
exp [i(ks + 2ky)Zo] = exp [(knZy — 8Z2) ].
Substituting these into (38), we obtain

o2 1
—_— 2
(2 + )
= {[ X AjEyexp (ikiZo) + AEy exp (—1idZs)

j=n,s

cexp (th.Zo) + A Es, exp (16Z:) exp (iksZy) ]
+ AnEln exp [l<kn + ka)ZO:I + AsE2s
cexp [¢(ks — 2k,) Zo 1} exp (vme) (40)

As outlined in the previous sections, we can find the
following solvability econdition for (37) and (40):

at p=1.

d4., :
= —zl:k"‘ymn‘]m’z <7mn) _-_l—l[EOnAn + Els
dZ,
cexp (—10Z) A (41)
d4, .
= —Z[ks’Ymstlz(’Yms) ]—IEEOSAS + E?n
az,

sexp (46Z:)A,]. (42)
We seek the solution of (41) and (42) in the form
As = asexp (¢Zs) A, = anexp[(¢g — 0)Z,]. (43)

Substituting (43) into (41) and (42) and eliminating the
a’s, we obtain

¢ +iog+0=0 (44)
where
0 = Bolheymed w(Yme) T — 8 + BoulkaVmn ' (Ymn) T
(45a)
and

Q = 8Bos[ksYme w2 (Yms) T + [knksVmnYms m'2 (Yimn) I m'2
* ('Yms) ]——l[ElsE’Zn - EOnEos]. (4:5b)
The solution of (44) is

= —3io* £ (6* + 40)]. (46)

Using the expressions for the E;; from Appendix II, one
can show that ¢ 4+ 4Q > 0 so that ¢ is pure imaginary.
Consequently, 4, and A, are oscillatory and neither mode
can exist in the waveguide without exciting the other.
Moreover, both modes propagate unattenuated along the
waveguide with the energy being continuously exchanged
between therm.

Case of by, — k, ~ k,

Substituting (12) and (31) into (11a) and (11b), and
using (24), we obtain
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Vot 4 ks
L 0A;
~{- = P+

+ Budw(onp) As exp [i(ks + 2kw) Zo]

&4,
0Zy

]Jm (Ymsp) exp (ik;Zo)

J=n,s

+ BoJ 0 (Bsp) Anexp [i(k, — 2k,) Zo]} exp (tmeo) (47)

2 4]
87,2 &

= {Dod, exp (ik.Zo) + DosAs exp (thsZo)
4 Dindn exp [i(ka + 2k0)Zo]
+ Dy A, exp [i(ks + 2k,) Zo )
+ D2 A, exp [ilk, + 2k,) Zo]

+ DgsA; exp [i(ks — 2ky) Zo ]} exp (img) at p =1

(48)

where the constants Do and Dy, are defined in Appendix
11, and the constants Bj, and Dy;, and Ds; do not affect
dA;/0Z, as evident from the solvability condition which
will be given.

We find the solvability condition for (47) and (48) by
seeking a particular solution of the form (33) and follow-
ing the procedure outlined in the previous section; the
result is

94 . 0A;
6Z12 + szja—Z? = 2P0;Aj (49)
where
POJ' = DOf/'ijJm, ('Ym]') . (50}

In order to find A; we have to solve the system (29) and
(49). Thus differentiating (29a) and (29b) with respect to
Zy and substituting into (49), we obtain

04, :
oz, = —3(0/ln) Prexp (i2:) A,
2
— iL(Pon — 3P1P2) [k JAn (1)
?;és = 3(8/ks) Py exp (—136Z1) A,
2

- i[(POs — 3P\Py)/k]A,.  (52)

We note here that (29a) and (51) are the first two terms
in a multiple space scaling analysis of

dA.,
dz

= ¢[1 — %e(8/k,) 1P1exp (vedz) A,

— e[ (Po, — 3PPs) /kn A  (53)

Similarly, (29b) and (52) are the first two terms in a
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multiple scaling analysis of

dA,
dz

1e(8/ks) IP; exp (—debz) A,

— 1 (Pos — $P1P2) [k, JA,.  (54)
We now seek the solution of (53) and (54) in the form
(55)

where a,, a;, and ¢ are constants. Substituting (55) into
(53) and (54), and eliminating the a’s we obtain

A, = a,exp[i(q+ e)z] A, = a,exp (igz)

¢F+E&—-0=0 (56)
where
£ = 8¢ + e[k (Pow — 3P1P2) + ki {(Pos — 3P1P5) ]
(57a)
Q = EP1Py(kaks) [koks — 5626° + $ed(k, — ks) ]
— &(8/ks) (Pos — 3P1Ps) — et (knks) ™!
< (Pow — 3P1Ps) (Pos — 3P1P3). (57b)
The solution of (56) is
—3E £ (2 o+ 40)]) (58)

Since PP, is negative as shown in Section IV, Q =
—eP1 Py 4 0(¢*) according to (57b) ; @ is positive. Hence,
¢ is real and A4, and A, are oscillatory as a consequence.
Thus the interacting modes propagate unattenuated along
the waveguide with the energy being continuously ex-
changed between them.

VI. DESIGN OF A MODE COUPLER

The foregoing analysis applies to any Fourier com-
ponent of a wall distortion function that is a general
periodic function. Assuming that the excitation at Z = 0
is given as A4,(0) =1 and A4,(0) = 0, then using the
results of first-order coupling of Section IV and following
the procedure for the derivation of (57a) and (57b) of
[57], we obtain

[ A, | = (82 — 4P1Ps) V2{8* — 4P\ P,y
ccos® [5(8% — 4PuP) 2Z ]2 (59)
[A, | = 2(82 — 4PPy) 2P,
-gin [3(82 — 4P1Py) 271 ). (60)

If these expressions are now substituted into (12) and
then the Poynting vector is evaluated and integrated over
the cross section of the guide, one can show that energy is
conserved to O(e). In other words, the energy of the
excitation at Z = 0 is equal to the sum of the energies of
the two interacting modes at any location along the
z axis. KEquations (59) and (60) show that the energy will
be exchanged between the two modes along the guide.
This feature of energy exchange can be utilized in the
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design of mode couplers operating under th: resonance
condition k, — ks & k., as will be discussed.

We consider a waveguide whose TMg mode is cut off at
5 GHz. At 15 GHz, the wavenumbers of the TMy and
TMog: modes are 6.8 and 4.64, respectively. Then, if the
wall perturbation has a wavenumber approximately equal
to 2.16, these two modes are strongly coupled. In what
follows, we consider a wall perturbation with ¢ = 0.1 and
ko = 2.16 corresponding to 6 = 0, and k, = 2.06 cor-
responding to § = 1.0. Then the variation of the ampli-
tudes of the two coupled modes are calculated from (59)
and (60).

Figs. 1 and 2 show that complete energy exchange is
achieved between the two modes only when the modes are
perfectly tuned (i.e., 6 = 0). When the TMy mode is
excited at Z = 0, Fig. 1 for § = 0 shows that all the energy
is transferred to the TMg, mode at Z; = 0.86 correspond-
ing to the length 8.6R,. When § = 1.0, Fig. 2 shows that
the maximum energy transfer occurs at Z; = 0.84 cor-
responding to the length 8.4R,.

T T T
)
wl
o
p ]
[
.}
[N
S
=
a
g os
=
(o]
Fig. 1. Variation of mode amplitudes | A, | and | 4, | along the
axis for perfectly tuned modes.
T T i
A A |
o fl | [Ad
) /
o
pm)
=
-
a
s
I
W os -
e}
b=
o I 1 I

4

Fig. 2. Variation of mode amplitudes | 4, | and | A, | along the
axis for detuned modes with § = 1.0
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APPENDIX 1

To determine the solvability condition for a problem of

the form
1d dr; m?
i (P d—p]> + (%nﬁ - ;;) I;=F;i(p) (61)

T;(1) = ¢ (62)

we multiply (61) by a function pu(p), to be specified later,
integrate the result by parts from p = 0 to p = 1, and

obtain
1 1d du m?
=2 (0Z)  (y2 — — d
/(.)pr][ﬁ()hc(‘)dp)_l <QJ pz>u] P
dar, d
+ (1) () = 1) T (D)
p o

= [ (o) Filo) do. (63)
0

We choose u{p) to be a solution of the so-called adjoint
homogeneous problem

1d du m?
e —_— m.Z._—— :0
pdp<pdp>+<7] pf">u

u(l) = 0. (65)

We take the solution of (64) and (65) that is bounded at
p = 0asu(p) = J,.(vmip). Substituting for u into (63) and
using the boundary condition (62), we arrive at the follow-
ing solvability condition:

(64)

ermidw’ (yms) + f o (vmip) Fi(0) dor = 0. (66)
0
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APPENDIX II
Eoj = —3vm/ ' (vmi) + 5¥miS ' (Yms)
A (v — kikw) [T’ (05) /aif m (i) ]
+ (Y + kku) [T’ (B5) /87T (85) 1}

Ey; = $(vmi — kikw) {¥mSw'" (Yms) — (Yms/at5)
*(Ymg® — 2kt — 3kikw) [ (Ymi) I m () [T m () T}
By = 3 (vm? + ko) (Yo T (vms) — (vmi/83)

(vm? — 2ka? + ki) [’ (Ymi) T (Bi) /I (85) 1}
Do = ¥mndTw’ (Yma) (s (Youn® + lenkir) (2k5 + Fou)
+ (Y — Fak)2 [T (@) fotn m(etn) 1)
— 2Ymn® o (Yun) }
Doe = 1¥ms{w’ (Yms) (L (Vms? — Foskow) (20 — k)
+ (Yms? + Ekw) LT’ (Bs) /BT w(Bs) 1)
— 2vn T (Yms) }-
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Asymmetric Coupled Transmission Lines

in an Inhomogeneous Medium

VIJAT K. TRIPATHI, MEMBER, IEEE

Abstract—Terminal characteristic parameters for a uniform
coupled-line four-port for the general case of an asymmetric, in-
homogeneous system are derived in this paper. The parameters
(impedance, admittance, etc.) are derived in terms of two inde-
pendent modes that propagate in two uniformly coupled propagating
systems. The four-port parameters derived are of the same form
as those obtained for the symmeftric case resulting in similar two-
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port equivalent circuits for various circuit configurations considered
by Zysman and Johnson [1]. The results obtained should be quite
useful in designing asymmetric coupled-line circuits in an inhomo-
geneous medium for various known applications.

INTRODUCTION

l lNIFORM coupled-line circuits are used for many
applications including filters, couplers, and im-
pedance matching networks. These circuits are usually



