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low frequencies. Considerable departure from the quasi-

static results has been shown to occur with increasing

frequency, however. The analysis verifies the rise of charac-

teristic impedance with frequency as predicted by Krage

and Haddad [6].
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Circular Waveguide with Sinusoidally Perturbed Walls

OMAR RAFIK ASFAR AND ALI HASAN NAYFEH

Abstract—Uniform second-order asymptotic expansions are
obtained for the propagation of TM waves in a perfectly conducting
circufsr waveguide with sinusoidally perturbed walls usingthemethod
of multiple scales. The analysis concerns the interaction of two prop-
agating modes satisfying the resonance condition imposed by the
periodici~ of the waveguide walls. Two cases of resonance are
treated as well as the case of decoupled modes. In the first case
resonance occurs whenever the tierence between the wavenumbers
of the two interacting modes is nearly equal to the wall wavenumber,
while in the second case the difference is nearly equal to twice the
wall wavenumber. The results of the theory are then applied to the
design of a mode coupler.

I. INTRODUCTION

w AVEGUIDES having periodic structure find appli-

cation in such microwave devices as the magnetron,

the traveling-wave amplifier, and the linear accelerator

[1]. In this paper we consider the case where the peri-
odicity is c, mmll perturbation of the wn.veguide wall

which results in its use as a mode coupler.

We consider the case of propagation of TM modes in a

perfectly conducting circular waveguide whose wall is

sinusoidally perturbed so that the radius of the cross

section of the guide at an axial location z’ in a cylindrical

coordinate system (p’,@,z’) is given by

R(z’) = RO(l + 6 sin lcW’z’) ‘(1)
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where ROis the average or unperturbed radius of the guide,

kw’ is the wavenumber of the wall perturbation, and e is a

dimensionless parameter much smaller than unity and

equal to the ratio of the amplitude of the periodic pertur-

bation to the average radius Ro.

Marcuse and Derosier [2] treated the problem of a round

dielectric waveguide with periodic wall corrugations and

found that two guided modes are coupled if the difference

between their wavenumbers is equal to the wavenumber of

the wall k~’. In fact, other resonances are possible as our

analysis will show. They also confirmed the coupling

experimentally and observed complete power conversion

between the two modes. Marcuse used a combination of

the Galerkin procedure and the method of averaging in

order to obtain equations for the amplitudes of the

interacting modes [3]. Chandezon et al. [4] treated wave

propagation in a perfectly conducting guide with sinus-
oidally perturbed walls using the I&yleigh-Schrodinger

technique to find a perturbation expansion in powers of e

for the case of a cylindrically symmetric TM mode

(8/80 = O). They only considered the very special case

of resonance when the wavenumber of the excited mode is

equal to ~k~’ with a correction to first order in c only.
A first-order uniformly valid expansion for the case of a

parallel-plate waveguide with sinusoidal walls was ob-

tained by Nayfeh and Asfar [5] for two interacting modes

in the neighborhood of resonance that is given by the

condition

kw’ x k.’ – k.’ (2)
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where k.’ (k.’ ) are the wavenumbers of the generated

(excited) mode. The resonances occur in the straight-

forward expansion as nonuniformities, and the uniformly

valid expansion was obtained by using the method of

multiple scales [6]. It was also shown that the solution is

consistent with conservation of energy.

In this paper we determine second-order uniform

expansions for two interacting modes satisfying the reso-

nance condition (2) by using the method of multiple

scales, as well as near the resonances

The latter appears as a nonuniformity in the straight-

forward second-order equations which were found to be

nonsolvable. Solutions away from resonance will also be

obtained by using the method of multiple scales.

II. FORMULATION

We introduce dimensionless coordinates p and z given by

p = p’/Ro, z = z’/Ro, and make time dimensionless by

using Ro/c where c is the phase speed of electromagnetic

waves in the medium. We consider the case of TM modes as

an illustration of the technique which is applicable to TE

modes as well. For TM modes the fields are derived from a

z-directed vector potential whose scalar component +,

which is assumed to have the time variation exp ( —id), is

governed by the Helmholtz equation

W’* + lc%j = o (4)

where k is the dimensionless free-space wavenumber and

The boundary condition is the vanishing of the tangential

component of the electric field at p = 1 + c sin k~.z. This

gives

(6)

111. PERTURBATION EXPANSION USING THE

METHOD OF MULTIPLE SCALES

We seek an asynlptotic expansion to #in the form

# = 4JO(P,0,Z0,Z1,Z2) + @l(P,dbzo,zl,z2)

+ +J,(p,$b,zo,z,,z,) + . . . (7)

where ZO = z is a short-length scale of the order of a

wavelength; 21 = ce and 22 = e2z are long-length scales

characterizing the spatial amplitude and phase modula-

tions. Using the chain rule we can express d/a~ as

(8)

Substituting (7) and (8) into (4)– (6), expanding tat the

boundary in a Taylor series around p = 1, and equating

coefficients of equal powers of c to zero, we obtain:

Order e“

where

Order e

729

Voyo + k$Jo = o (9a)

()

~2

Vo’ =:: ‘P;p +;$2+—
82.2

(9b)

(s+ ’2)+0=0 at ‘=1 “c)

02*O
V02+I + k?+l = – 2 —

azoazl

(&+k2)”’=-kwcoskwzoi%o
-sinkwzo(c%+k

(lOa)

azyo
–2— at p=] (lOb)

azoazl

Order e2

a2*o 132*0
V09+2+ i+h = –2 — – —

13zoaz,
– 2#* (ha)

azlz

(&+k2)*2
aa~o

$kw sin 2kWZo —
02*O

=— – k. Cos kwzo –—
apzazo a,~azl

as~o
— 2 sin lCWZO

apazoazl –
sin2 lcWZo

“(:2+ ’’2)%$

az+o a2*1 _ z a2*1 _ ~ a2tio
–—–kwcoskuZo — — —

82? apazo azoazl azoa.zz

-sinkwzo(%+k2):a’ ‘= 1 (llb)

We assume that the solution of (9a) that is bounded at

the axis is a linear combination of two propagat’ ng modes;
i.e.,

*O = A.(-Z1,Z2)Jm(Tm.P) exp [i(k.ZO + ~+) 1
+ ~8(21,Z2)Jm(7m,P) exp [i(kszo + m~) ] (12)

where Jm is Bessel’s function of the first kind of order m and

Substituting (12) into (9c), we have
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Jm(7mj) = o. (14)

The functions An and A, will be determined from the

solvability y conditions of the first- and second-order prob-

lems.

IV. SOLUTION OF FIRST-ORDER PROBLEM

Substituting (12) into (10a) and ( 10b) and using the

fact that #0 vanishes at the wall, we obtain

VOZ$I+ k2#l = – 2i ~ kj ~; Jm (%njp)
i=7t,8

.exp [i(kiZo + wzr$)] (15a)

“ { (7J – h~w)f=p [i(k + k)zo]

– (’Ym} + ~jk) exp [~(~i– k)zo]}

.exp (ire@) at p = 1. (15b)

To determine the solution of (15a) and ( l,5b), we

dktinguish between two cases: k. – k. is away from km

(the two modes are decoupled) and ii. – k, x km (reso-

nance, the two modes are coupled). These cases are con-

sidered separately starting with the first.

Case of Decoupled Modes

In this case, the terms proportional to exp (ikjZ,),

exp [i (lcj + kw) 20], and exp[i (ki — lc~) 20] are inde-

pendent. Hence, we seek a particular solution to (15) in

the form

#l = r~(p) exp [i(k~ZO + T@) 1+ *; X T~@~J~’ (IW)
i=n,s

“ [(7m? – WL) exp [i(b + k) ZO]@iI(P)

– (7m? + J#L) exp [~(~i – ~w)zoIQI(P)1exp(i~@)-
(16)

Substituting (16) into (15) and equating the coeffi-

cients of the independent terms in 20 on both sides; we

obtain

(17a)

rj(p) = o (17b)

Q (@jl) + a@jl = o 0$1(1) = aj–z (18a)

where

()
~’

$=:$ p? —— aj’=w-(lcj+lcw)z (18b)
pdp dp @

~ (W + imil = o 0,1(1) = 63–z (19a)

where

(3? = k’ – (kj – ?&)’. (19b)

Since the homogeneous parts of (17) have a nontrivial

solution, the inhomogeneous problem has a solution if,

and only if, a solvability condition is satisfied (i.e., the

inhomogeneous parts are orthogonal to every solution of

the adjoint homogeneous problem). Since (17a) and ( 17b)

have the same form as (61) and (62), it follows from (66)

that the solvability y condition is

dAi
= O or Aj = Aj(ZZ)

-ii

(20)

hence, ri = O.

The solutions of (18) and (19) are

Ojl (p) = [aj2J~ (aj) ]–lJm (ajp) (21)

ejl (P) = [Bi2J~ (PJ ]-’J~ (&P). (22)

Substituting (21) and (22) into (17), and recalling that

I’j = O, we obtain

41 = ~ Z A~{ AI~Jm(cYiP) ew [~(k + k)zol
i=n,s

+ A~jJm(&p) exp [Z(kj – k.) Zo] } exp (ire@)

where

AU = %7mjJm’ (Ymj) (Ynu’ — ~jk) [CYj2Jm(cLj) ]–1

Azj = – ;ymjJm’ (ywj) (~~j’ + lcjkw) [B$Jm (@i) ]-l.

Case of Coupled Modes

For the case of near resonance we let

k.=k. –lc. +,s

(23a)

(23b)

(23c)

(24)

where 6 = O(1) is a detuning parameter, and express

exp [i(kn — ?cU)ZO] and exp [i(k. + kW)ZO] as

exp [i(kn – kw) 20] = exp [i(k.ZO – 821)] (25a)

exp[i(k. + k~) 20] = exp [i(kfiZO + 621)]. (25b)

In this case, the terms proportional to exp (ik8ZO) and

exp (iknZo) are not independent from the terms

exp [i (km — kw) ZO] and exp [i (k, + k~) 20], respectively.

Consequently, the solvability condition obtained in the

preceding section has to be modified accordingly. To de-

termine the solvability y condition, we let

i% = X rjl(p) exp [i(kjZO + w@)]. (26)
y=n,s

Substituting (26) into (15), using (25) and equating the

coefficients of exp (ilc3ZO) on both sides, we obtain

8A,
.&( rjl) + ~.jzrjl = — 2ikj —— J~ (IWP)

6’21
(27)

~~n’rfil = ~i7msA.Jm’ (yin.) (Tm,Z – kskw) exp (i8Z1)

at P = 1 (28a)

~m.’r.l = –&~~.A.Jm’ (Tin.) (Y~.2 + Wk) ew ( –i~zd

at p = 1. (28b)
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Since (27) and (28) have the same form as (61) and (62),

it follows from (66) that their solvability conditions are
(s+ ’2)”2

dA.—= P,exp (i6ZJA,
azl

(~ga) = X {~ojexp(i~jzo) +Ejexp[i(h+zk.)zol
I=n,s

aA,
+E,jexp [i(kj–2k~)ZO])A jexp(inzd) at p= 1

= P, exp ( –icIZl)An
=1

(29b)
(32b)

where
where the constants E%j are defined in Appendix 11.

As before, we determine the solvability coldition for

PI = ~ (W#WJJm’ (Yin) (Ym,2 – Mw) /Jm’ (Tmn) (32a) and (32b) by seeking a particular solution of the

(29c) form

P2 = –; (Tm./k,Yms)Jm’ (Tin) (Tmn2 + Mw) /Jm’ (Yin,) . vk, = X riz(p) exp [i(k,ZO + w@)]. (33)
j=?l,s

(29d) Substituting (33) into (32a) and (32b), and ecpating the

Equations (29a) and (29b) admit solutions of the form coefficients of exp (ikjZO) on both sides, we obtain

An = an exp [i(q + 6)2,] A, = a. exp (Z&) (sOa)

where a. and a. are constants and

g = ;[–6 + (32 – 4P1P,)1/’]. (30b)

Since 7~.2 – k,kw = k, – lc~– k,k. = k’ – ks(ks+ k.) =

k’ – k, (i%n+ d), and since k > k, and ?c.,P,P, <0,

hence q is real and An and As are ocsillatory. Therefore, to

this order, (30a) shows that neither mode can exist in the

waveguide without strongly exciting the other and that

both modes propagate unattenuated along the waveguide

with a continuous energy exchange between the inter-

acting modes.

The inhomogeneous solution for $1 in this case can be

abstracted from (23) by excluding the terms exp [i (kn —
k~) 20] and exp [i(k, + k.) 20]; that is

A = iAl~AJm(a.p) exp [i(k~ + k.) ZO + im~]

+ i&A,Jm(&P) exp [i(k, – k~)ZO + inzcb]. (31)

V. SOLUTION OF SECOND-ORDER PROBLEM

I’3Z =: ym~-2EOjAj at p = 1. (34b)

Since (34a) and (34b) have the same form as (61) and

(62), it follows from (66) that the solvability condition is

dAj
iki-lym~–lEOiAJ/Jm’ (ym~).

dZ, ‘=
(35)

The solution for Aj is therefore

where aj is a constant. We note that the exponent in (36) is

pure imaginary and hence A~ is bounded. Thus the effect

of the wall perturbations is to decrease the wavenumbers of

all decoupled modes.

Case of lcn – k. % 2km

Substituting (12) and (23) into (ha) and ~~1lb), and

using the fact that dA~/dZ1 = O, we obtain

To determine the variation of A~ with Z,, we need to
Vos$z + kz+~ = – 2i X ki’$ J~ (Y~jP)

investigate the second-order problem. To accomplish this, ?=. *
we distinguish three cases:

,-

1) the case of decoupled modes (i.e., lcn – k. away from
.exp [i(kjZO + m~)] (37)

km or 2kW) ;

2) the case of second-order resonance (k. – k, = 2kW) ; (&+k2)”2

3) the case of first-order resonance treated in the pre-
= X i Eo; exp (ikjZO) + El; exp [i(kj + 2k.) 201

vious section (kn — k. = kwj. i=%,8

In what follows, we treat each of these cases separately. + Ez~ exp [i(kj – M.) ZO] }Aj exp (ire@) at P = 1

Case of Decoupled Modes (38)

Substituting (12) and (23) into (1 la) and ( llb), and where the constants E,, are given in Appendix [1.

using the fact that dA~/~Zl = O, we obtain For the case of near rqsonance, we let

dA~
V02$Z+ k2+, = –% ~ kj ~, Jm (Ym,p)

k. = .& + 2k. + ,28 (39)

i==,8
where 6 is a detuning parameter. Using (39), we express

oii~) 20] and exp [i(k, + 2k.) ZO] as.exp [i(kjZo + m@) ] (32a) exp [i(k. — #
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exp[i(lh – 2k.)Zo] = exp[i(k,Z~+8Z2)]

exp[i(k, +21cw)Z0] = exp[i(k.Zo – ~Z2)].

Substituting these into (38), we obtain

(2%+’’)”2
= {[ X Aj%exp(ikjzo) +A,E~, exp(–i6Z~)

j=%,s

oexp ( iknZO) + AnEzn exp (i6Z2) exp (ik,ZO) ]

+ AnEln exp [i(kn + 2k.)ZO] + A.EZ,

.exp [i(ks — 2kW)ZO]) exp (imd) at p = 1. (40)

As outlined in the previous sections, we can find the

following solvability condition for (37) and (40) :

dAJ. —i[k%YmnJm’2 (Ymn) ]–l[EonAn + EI.
dZ~

.exp ( –ic$Zz)A.] (41)

dA,
—i~k.ymsJm’z (yin,) ]–1 [Eo,A , + E,.

z=

.exp (ibZ,)An]. (42)

We seek the solution of (41) and (42) in the form

A, = a, exp (qZ~) An = am exp [(q – i5)Za]. (43)

Substituting (43) into (41) and (42) and eliminating the

a’s, we obtain

qs+iuq+fi=o (44)

where

u = Eo.[k.7m.Jm’2 (~ms) ]-’ – 8 +

and

Eo.[kn7mnJm’2 (Ym.) ]-1

(45a)

Q == 8Eo.sl&m,Jm12 (Yin,) ]–1 + ~lcnks7mnym,Jm’2(ymm)Jm’2

“ (-yin,) ]-1[E1,E2n – EonEos]. (45b)

The solution of (44) is

q = –;i[uz + (1+ + 4c?)q. (46)

Using the expressions for the E;; from Appendix II, one

can show that U2 + 4Q > 0 so that q is puke imaginary.

Consequently, A. and A, are oscillatory and neither mode

can exist in the waveguide without exciting the other.

Moreover, both modes propagate unattenuated along the

waveguide with the energy being continuously exchanged

between them.

Case oj k% – k. W kW

Substituting (12) and (31) into (ha) and (llb), and

using (24), we obtain

+ BmJm(anP)A~ exp [i(k. + 2kw)Zo]

}
+ B,Jm(&P) An exp [i(k. – 2k.)Zo] exp (im~) (47)

[%+ ’’1”2

= {DonA. exp (iknZo) + Do,A. exp (ik,ZO)

+ D,~An exp [i(kn + 2L) 20]

+ D,,AS exp [i(k, i- 21cw)ZO]

+ D2nAm exp [i(kn + 2kW)ZO]

+ D,.A, exp [i(k, – 2kw) ZO] } exp (imf+) at p=l

(48)

where the constants Do. and Don are defined in Appendix

II, and the constants Bj7 and Dl~, and Dzj do not affect

dAj/8Z, as evident from the solvability condition which

till be given.

We find the solvability condition for (47) and (48) by

seeking a particular solution of the form (33) and follow-

ing the procedure outlined in the previous section; the

result is

(49)

where

Po~ = DoYYmiJm’ (~m~) . (50)

In order to find A; we have to solve the system (29) and

(49). Thus differentiating (29a) and (29b) with respect to

21 and substituting into (49), we obtain

13An

82, =
—~ (8/kn)PI exp (i6Zl)A,

– i[(Po~ – ~PIPz) /k~]A~ (51)

8A,

az2
= +(8/ks)P2 exp ( —@Zl)Afi

i[ (POS— $PIPz)”/k~]A~.— (52)

We note here that (29a) and (51) are the first two terms

in a multiple space scaling analysis of

dAn
— = c[l — ~E(5/kn) ]Pl exp (i&)A,
dz

— ic2[ (Pen — ~PIPJ /?crJAn. (53)

Similarly, (29b) and (52) are the first two terms in a



ASFAR AND NAYFEE: CIRCULAR WAVEGUIDE

multiple scaling analysis of

dA,

dz
— = ~[1 + ~t(d/k.)]Pz exp (—idz)An

– ie2[(P0, – &lPJ /k,]A,. (54)

We now seek the solution of (.53) and (54) in the form

An = an exp [i(q + ed)z] A. = a, exp (iqz) (55)

where an, a,, and q are constants. Substituting (55) into

(53) and (54), and eliminating the a’s we obtain

q’+(q–fi=o (56)

where

~ = s, + e’p%-’ (P,n – +PIP2) + k.-’ (Po, – +P@) ]

$2=

(57a)

e2PlP2 (k.ks) –I[knk, – $elv + +Ecl(1C. — L*)]

— e3(8/k.) (PO, — :P1P2) — 64(knk,) –1

“ (l’,. – *P1P2) (PO, – *PIP,). (57b)

The solution of (56) is

q = –*[& + (i’ + 4Q)’/2]. (.5s)

Since PIPZ is negative as shown in Section IV, Q =

— cZPIPZ + O(e3) according to (57b) ; $2 is positive. Hence,

q is real and An and A, are oscillatory as a consequence.

Thus the interacting lmodes propagate unattenuated along

the waveguide with the energy being continuously ex-

changed between them.

VI. DESIGN OF A MODE COUPLER

The foregoing analysis applies to any Fourier com-

ponent of a wall distortion function that is a general

periodic function. Assuming that the excitation at Z = O

is given as A.(O) = 1 and A,(O) = O, then using the

results of first-order coupling of Section IV and following

the procedure for the derivation of (57a) and (57b) of

[.5], we obtain

I An I = (62 – 4PIP,)-12{62 – 4P,l”

.COS2 [+ (62 — 4~f’z) 1/2.zl] }1/2 (59)

IA, \ = 2 (b’ – 4P,P2)-11’P,

-sin [~ (32 — 4P1P2) 11221]. (60)

If these expressions are now substituted into (12) and

then the Poynting vector is evaluated and integrated over

the cross section of the guide, one can show that energy is

conserved to O(~). In other words, the energy of the
excitation at Z = O is equal to the sum of the energies of

the two interacting modes at any location along the

z axis. Equations (59) and (60) show that the energy will

be exchanged between the two modes along the guide.

This feature of energy exchange can be utilized in the

733

design of mode couplers operating under tht resonance

condition km — k, ~ l%. as will be discussed.

We consider a waveguide whose TMo1 mode is cut off at

5 GHz. At 15 GHz, the wavenumbers of the TMO1 and

TMOt modes are 6.8 and 4.64, respectively. Then, if the

wall perturbation has a wavenumber approximately equal

to 2.16, these two modes are strongly coupled. In what

follows, we consider a wall perturbation with E = 0.1 and

kw = 2.16 corresponding to 6 = O, and kw = 2.06 cor-

responding to 6 = 1.0. Then the variation of the ampli-

tudes of the two coupled modes are calculated from (.59)

and (60).

Figs. 1 and 2 show that complete energy exchange is

achieved between the two modes only when the modes are

perfectly tuned (i.e., 6 = O). When the TIJ1O1 mode is

excited at Z = O, IFig. 1 for 8 = O shows that all the energy

is transferred to the TM02 mode at 21 = 0.86 correspond-

ing to the length 8.6R0. When 6 = 1.0, Fig. 2 shows that

the maximum energy transfer occurs at ZI = 0,84 cor-

responding to the length 8.4R0.

I ,

z,

Fig. 1. Variation of mode amplitudes I An I and I A, I along the
axis for perfectly tuned modes.

~“” ~ 1

z,

Fig. 2. Variation of mode amplitudes I An [ and I A, I along the
axis for detuned modes with o = 1.0.
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APPENDIX I

To determine the solvability condition for a problem of

the form

I’j(l) = q (62)

we multiply (61) byafunction pu(p), to be specified later,

integrate the result by parts from p = O to P = 1, and

(63)

We choose U(P) to be a solution of the so-called adjoint

homogeneous problem

u(l) = o. (65)

We take the solution of (64) and (65) that is bounded at

p = O as u (P) = J% (y~jp). Substituting for u into (63) and

using the boundary condition (62 ), we arrive at the follow-

ing solvability y condition:

/

1

c,7mjJm’ (Ym~) + PJm(%jP)~j(P) (ZP = 0. (66)
o

[1]

[2]

[3]

[4]

[5]

[6]

. (7m~ – 2k.2 + 3kjk.) [Jm’(~mj)Jm’(6j)/ Jm(6j) ]1

Don = b’?nn{Jm’ (Ymn) ([~s(%?? + knkw) (2ks + k.)

+ (~mn’ – knk~) 2[Jm’ (an) /’anJm(an) ])

— 2Ynm3Jm” (Trm) }

L%. = &ym {Jm’ (~m,) ( [k.(wnsz – kk) (2L – k)

+ (~ms’ + hh)2[Jm’ (L) /B,Jm(BJ ])

– 27ms3Jm” (~m,) } .
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Asymmetric Coupled Transmission Lines

in an Inhomogeneous Medium
VIJAI K. TRIPATHI, MEMBER, IEEE

Ab.stracf-Terminal characteristic parameters for a uniform
coupled-line four-port for the general case of an asymmetric, in-
homogeneous system are derived in this paper. The parameters
(impedance, admittance, etc.) are derived in terms of two inde-

pendent modes that propagate in two uniformly coupled propagating
systems. The four-port parameters derived are of the same form
as those obtained for the symmetric case resulting in similar two-
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port equivalent circuits for various circuit configurations considered
by Zysman and Johnson 11]. The results obtained should be quite

useful in designing asymmetric coupled-line circuits in an inhomo-
geneous medium for various known applications.

INTRODUCTION

u NTIFORM coupled-line circuits are used for many

applications including filters, couplers, and im-

pedance matching networks. These circuits are usually


